If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2-13=-10m
We move all terms to the left:
m^2-13-(-10m)=0
We get rid of parentheses
m^2+10m-13=0
a = 1; b = 10; c = -13;
Δ = b2-4ac
Δ = 102-4·1·(-13)
Δ = 152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{152}=\sqrt{4*38}=\sqrt{4}*\sqrt{38}=2\sqrt{38}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{38}}{2*1}=\frac{-10-2\sqrt{38}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{38}}{2*1}=\frac{-10+2\sqrt{38}}{2} $
| 5^-3x=125 | | (2k-1)^2=-8 | | 0=29.655-2.194x+x^2 | | 13x12= | | 4=2(h−10) | | 18a-10a-3a-a+3a=7 | | -3(z+14)=15 | | 8x-5x+x+5x=18 | | 10x-75=5x | | 4(z−12)=16 | | g+23=-31 | | 11m-7m=20 | | 3=p+104 | | 9=-4j+-3 | | 7u-6u=6 | | y=26-35 | | -11=j4+ -9 | | y=26-32 | | 11=7+4j | | 6.30-9.25=x | | 3(2+y)-3y=6 | | 4(j−20)=-4 | | 2y=16y-40 | | 10x-270/x^2=0 | | y=26-31 | | 9.25-6.30=x | | 4x+30=3x+5 | | 4x+2=2(3x-5) | | 6-x-6=-4 | | 2(8+-4y)-5y=29 | | 2y-6y=38 | | 5x=45-32 |